Trial Higher School Certificate Examination

2002

Mathematics

General Instructions

- Reading time 5 minutes
- Working time 3 hours
- Write using blue or black pen
- Board-approved calculators may be used
- A table of standard integrals is provided at the back of this paper
- All necessary working should be shown in every question

Total marks (120)

- Attempt Questions 1-10
- All questions are of equal value

Students are advised that this is a Trial Examination only and does not necessarily reflect the content or format of the Higher School Certificate Examination.

Question 1 (12 marks)

a) Evaluate
$$\frac{23.97 - (3.62)^2}{\sqrt{4.51}}$$
 correct to 2 decimal places

1

b) Solve:
$$\frac{x}{3} - \frac{2x+1}{4} = 5$$

2

c) Sketch
$$y = \sin 2x$$
 for $0 \le x \le 2\pi$

2

d) Solve:
$$|1-2x| < 4$$

3

e) Evaluate
$$\log_e 3.5$$
, correct to 2 decimal places

1

f) If
$$\frac{dy}{dx} = x^2 + 8x$$
 and when $x = 3$, $y = 0$ find y in terms of x

Question 2 (12 marks)

a) Differentiate:

(i)
$$y = (2x-5)^4$$

2

(ii)
$$y = e^{2x} \sin x$$

2

b) Using the information on the following diagram

R (2,3)

9 (5,-2)

(i) Show that the equation of the line
$$PQ$$
 is $x+3y+1=0$

2

(ii) Find the length of PQ

1

(iii) Find the perpendicular distance from R to PQ

2

(iv) Find the area of ΔPRQ

1

(v) Find the size of the angle RTP correct to nearest degree

Question 3 (12 marks)

a) Prove $\csc x \cos x \tan x = 1$

1

b) Given that $\cot \beta = \frac{3}{2}$ and $\sin \beta < 0$ find exact value of $\cos \beta$

2

c) Solve $2\sin^2 x + \cos x = 2$ for $0^\circ \le x^\circ \le 360^\circ$

- 3
- d) The bearing of a lighthouse L from a ship at M is $N55^{\circ}E$. The ship then sails due East from M to a point P which is 10 nautical miles from L. The bearing of the lighthouse from P is $N25^{\circ}E$.

- (i) Copy the diagram into your answer booklet.
- (ii) Deduce that $M\hat{L}P = 30^{\circ}$

1

- (iii) Show that $MP = 5\csc 35^{\circ}$ and hence find MP correct to 1 decimal place.
- 3

2

(iv) If the ship continues to sail due East from P find its shortest distance from the lighthouse.

Question 4 (12 marks)

- a) Find the primitive of:
 - (i) $3xe^{x^2}$

2

(ii) $\tan x$

2

b) (i) Sketch the curve $y = \ln(4-x)$ showing the x and y intercepts

2

(ii) Find the equation of the tangent at the point where the curve crosses the x axis

2

(iii) Find the exact area bounded by the curve and the x and y axes

Question 5 (12 marks)

a) Using the following table of values find an approximation to the value of:

2

$$\int_{1}^{5} f(x)dx$$
 using Simpson's Rule with 5 function values

ſ	x	1	2	3	4	5
	f(x)	1.74	3.9	4.2	7.89	10.2

b) The following is a graph of some function y = f(x).

(i) In your answer booklet graph y = f'(x) and y = f''(x) if at x = 1 there is a point of inflexion.

1

3

(ii) Explain what happens to the curve at a point of inflexion.

4

c) (i) Determine the stationary points and their nature for the curve $y = x^3 - 6x^2 + 9x - 7$

1

(ii) Sketch the curve

1

(iii) For what x values is the curve increasing?

2

1

3

1

Question 6 (12 marks)

remains?

- Zinc is extracted from a mine at a rate that is proportional to the amount of zinc a) remaining in the mine. Hence the amount R remaining after t years is given by $R = R_o e^{-kt}$ where k is a constant and R_o is the initial amount of zinc. After 5 years, 50% of the initial amount of zinc remains.
 - Find the value of k (correct to 4 decimal places) (i)
 - (ii) How many more years will elapse before only 30% of the original amount 3
- Joanne decided to save for an overseas holiday. She decided to deposit \$500 into a special account at the beginning of each month for 3 years. The account paid 6% pa compounded monthly.
 - How much is the first payment of \$500 worth at the end of 3 years? (i)
 - (ii) Prove, by developing a geometric series, that the total value of all her deposits at the end of 3 years is given by
 - Total value = $100\ 500\ (1.005^{36}-1)$
 - (iii) Calculate this value.
 - (iv) If Joanne had needed a lump sum of \$22 000 by the end of the third year what would she have had to save each month? (You may use any previous working). 2

Question 7 (12 marks)

a) The limiting sum of the infinite geometric series $1+5^x+5^{2x}+...$ is 5. Find x (correct to 3 decimal places).

3

- b) Find the x values of the intersection points of the curves x-y=4 and $y=x^2-3x-4$. Hence, find the area between the two curves.
- 4

c) (i) Write down the discriminant of: $3x^2 + 2x + k$.

7

- (ii) For what values of k does $3x^2 + 2x + k = 0$ have real roots?
- d) If one root of the equation $mx^2 px + 1 = 0$ is double the other, prove that $2p^2 = 9m$.

Question 8 (12 marks)

- a) The velocity of a particle moving in a straight line is given by v = 2t 6 where position is measured in metres and time in seconds. If the particle is initially 4 metres to the right of the origin
 - (i) Find an expression for displacement.

1

(ii) Find when and where the particle comes to rest.

2

(iii) Find the total distance covered by the particle in the first 5 seconds.

1

(iv) Evaluate $\int_0^5 (2t-6) dt$

2

(v) Explain why your answers for parts (iii) and (iv) are not the same.

1

- b) The rate at which gas escapes from a balloon is given by $\frac{dG}{dt} = \frac{-3}{t+1}$ where the gas is measured in cm³ and time in seconds.
 - (i) Find G as a function of time if the initial amount of gas in the balloon is 10cm^3 .

2

(ii) How long before all the gas has escaped?

Question 9 (12 marks)

a) Find:

(i)
$$\int \sin^2 x \cos x \, dx$$

1

(ii)
$$\int_0^{\frac{\pi}{4}} (2\sin x - \cos 2x) \ dx$$

3

b) Sketch the curve $y = 2\cos \pi x$ for $0 \le x \le 2$

1

On the same set of axes sketch the graph y = 1 - x

1

Using your graph state how many solutions $2\cos \pi x = 1 - x$ has in the domain $0 \le x \le 2$

1

c) The region QPORS is formed by an equilateral triangle OPQ with a side of 12cm and a sector QORS. PR is a straight line. QSR is an arc of the circle centre O.

Giving answers in exact form find:

(i) The perimeter of the region

-2-

(ii) The area of the region

Question 10 (12 marks)

a) (i) State domain and range of the function $y = \sqrt{9-x}$

2

(ii) Sketch a graph of this function

1

(iii) Calculate the volume of the solid generated when the area bounded by the curve and the coordinate axes in the first quadrant is rotated about the y axis.

3

b) The diagram shows the curve $y = \sqrt{9 - x^2}$ for $x \ge 0$. P is the point $(t, \sqrt{9 - t^2})$ on the graph and M is the foot of the perpendicular from P to the x axis.

1

(i) Write down an expression in terms of t for the area A of the triangle OPM.

_

(ii) Find the coordinates of the point P which gives triangle OPM a maximum area.

MATHEMATICS - SOLUTIONS

QUESTION 1:

(a) 5.12 (cornect to 2 dec. pl)

(b)
$$\frac{x}{3} - \frac{2x+1}{4} = 5$$

$$\frac{4x - 3(2x+1)}{12} = 5$$

$$\frac{4x - 6x - 3}{12} = 5$$

$$\frac{-2x - 3}{12} = 5$$

$$-2x - 3 = 60$$

$$-2x = 63$$

$$\therefore x = -63$$

(d)
$$|1-2x| < 4$$

 $\Rightarrow -4 < 1-2x < 4$
 $-5 < -2x < 3$
 $\frac{x}{4} > x > -\frac{3}{2}$
 $\frac{1}{2} < x < \frac{x}{2}$

<u>.2.</u>

(f)
$$\frac{dy}{dx} = x^2 + 8x$$

 $\Rightarrow y = \frac{x^3}{3} + 4x^2 + C$
when $x = 3, y = 0$
 $\therefore 0 = 9 + 36 + C$
 $\therefore C = -45$
i.e. $y = \frac{x^3}{3} + 4x^2 - 45$

<u>ુ.</u>

QUESTION 2:

(a) (i)
$$\beta = (2x-5)^{4}$$
 $\frac{dy}{dx} = 4(2x-5)^{3}.2$
 $= 8(2x-5)^{3}$

(ii) $\theta = e^{2x} \sin x$
 $\frac{dy}{dx} = Vn' + n V'$
 $= \sin x. 2e^{2x} + e^{2x} \cos x$
 $= e^{2x}(2 \sin x + \cos x)$

(b) (i)
$$P(-1,0) = (5,-2)$$

$$m_{RR} = \frac{-2-0}{5--1}$$

$$= -\frac{1}{6}$$

$$=$$

(i)
$$PQ = \sqrt{(5--1)^2 + (-2-0)^2}$$

= $\sqrt{36 + 4}$
= $\sqrt{40}$
= $2\sqrt{10}$

4.

(iii) (2,3) to
$$x + \frac{2}{3} + 1 = 0$$

$$d = \frac{1(2) + 3(3) + 1}{\sqrt{1^2 + 3^2}}$$

$$= \frac{12}{\sqrt{10}}$$

$$= \frac{12\sqrt{10}}{10}$$

$$= \frac{6\sqrt{10}}{5}$$
(iv) area of $\Delta PRA = \frac{1}{2} \times PR \times d$

$$= \frac{1}{2} \times 2\sqrt{10} \times \frac{6\sqrt{10}}{3} \text{ (units)}$$

$$= 12(u-it^{2})$$

$$= 12(u-it^{2})$$

$$= -\frac{3}{2-5}$$

$$= -\frac{5}{5}$$

QUESTION 3:

(a) corecx core tour = 1 x tork x sine

(b) cot $\beta = \frac{3}{2}$ $\Rightarrow \beta$ is in 3 th quadrant

 $2 \sqrt{13} \qquad \therefore \quad \cos \beta = -\frac{3}{\sqrt{13}}$

c) $2 \sin^2 x + \cos x = 2$ $0 \le x^2 \le 260^2$ $2(1-\cos^2 x) + \cos x = 2$ $2-2\cos^2 x + \cos x = 0$. $\cos x(2\cos^2 x - \cos x) = 0$

.: Core = 0, ₹

(d)

: x = 60°, 90°, 270°, 200°

6.

10 Nantical Miles

(i) MLP = 180° - (35° + 90° + 25°) (angle sum S in 180°)

(ii) In DMLP by the dime Rule

MP

sindo = 10

sindo =

(iii) Using Cosine Rule $LM^{2} = (8.717)^{2} + 10^{2} - 2 \times 8.717 \times 10 \cos 115^{\circ}$ = 249.66536

: LM = 15.80 nmiles (to 2 d.p.)

QUESTION 4:

(i) $\int 3x e^{x^{2}} dx = \frac{3}{x} \int 2x e^{x^{2}} dx$ $= \frac{3}{x} e^{x^{2}} + c$ (ii) $\int \tan x dx = \int \frac{\sin x}{\cos x} dx$ $= -\int \frac{-\sin x}{\cos x} dx$ $= -\log(\cos x) + c$

(b) (i) y = lu (4-x) Domain: 4-x>

x intercept at y=0

ie ln (4-x) = 0

4-x = 1

x = 3

y intercept at x=0

ie y = ln 4

(i) $y = \ln(4-x)$ $\Rightarrow \frac{dy}{dx} = \frac{-1}{4-x}$ at (3,0) $\frac{dy}{dx} = \frac{-1}{1}$ = -1 $\therefore \text{ Jangent at (3,0) in}$

2 2 + y - 3 = 0

(iii) $A = \int_0^3 h (4-x) dx$

but as we are anable to find the primitive of lu (4-x) we must refer to area to the 7- aris as shown.

· A = \int z dy

 $g = \ln(4-x)$ $\Rightarrow e^{2} = 4-x$ ie $x = 4-e^{2}$

= \int (4 - e) dy

= \left[4y - e^y]^{\text{en}4}

= \left(4 - e^{\text{en}4}\right) - \left(0 - 1)

= 4 \left(4 - 4 + 1)

= 4 \left(4 - 3)

Area is (4 \left(4 - 3)) mix

(b) (i)

(ii) at a point of inflexion the curve changes cauity. Since the sign of f"(2) determines the concavity of a curve, we must have f"(x) = 0 at a point of inflexion AND the sign of f"(2) changing as we move along he curve from one side of the point to the other.

(c) (i) = 2 - 62 + 92 - 7 ---

 $2 = 3x^2 - 12x + 9$

Stationary point at the -0

ie at (15-3) and (3,-7)

$$\frac{d^2y}{dx^2} = 6x - 12$$

at (1, 3) y" = -6 -> (1, -3) is a relative maxim turning point.

⇒ (3, -7) is a relative minimum tuming point

(iii) dressing for 2<1

 $R = R_0 e^{-AC}$

(i) at
$$t=5$$
, $R=\pm R$

$$\pm R = Re^{-5h}$$

$$\Rightarrow e^{-5h} = \pm$$

.. another 3.7 years will elapse.

(b) (1) Trist \$500 grows to \$500 (1.005) = \$598.34

(ii) 1 st \$500 grows to \$500 (1.005) 2nd \$500 grows to \$500 (1.003) 5

last \$500 grows to \$500 (1.005)

.: Lump sum value

= \$500 (1.00s) + \$500 (1.00s) + ... + \$500 (1.00s) to Econotic series a = 500 (1.005) + 21.005 a 20

$$= \frac{a(x^{n}-1)}{x-1}$$

$$= \frac{500(1.005)(1.005^{16}-1)}{1.005-1} dollar (7)$$

\$19 766.39

(ir) O becomes

$$R = \frac{22 \cos(1.005-1)}{1.005(1.005^{k}-1)}$$

= \$100 500 (1.005 =1)

\$556.50 (connect to rearest cents

JESTION T:

1+5x+52x+... Geometric series a=1, +=5x S - 2

$$x + 1 = \log_5 4$$

$$x = \log_5 4 - 1$$

$$\log_5 5$$

$$0 + 0: z = 4 + x - 3z - 4$$

$$0 = x - 4x$$

$$0 = x(x - 4)$$

$$0 = x - kx$$

$$0 = x(x - 4)$$

$$x = 0, 4$$

$$A = \int_{0}^{4} \{z - 4 - (z^{2} - 3z - 4)\}^{2} dx$$

$$= \int_{0}^{4} (4x - x^{2}) dx$$

$$= \left(3z^{2} - \frac{1}{3}z^{3}\right)_{0}^{4}$$

$$= \left(3z - \frac{64}{3}\right) = 0$$

- 32 4.00 : 32 mits

(c) (i)
$$3z + 2z + k$$

$$\Delta = k - 4ac$$

$$= 2 - 4(3)(k)$$

$$= 4 - 12k$$

(d) Let roots be
$$\alpha$$
, 2α $m\tilde{x} - px + 1 = 0$

$$2 \times (p)^2 = 4$$

$$2p^2 = 4$$

$$\frac{2p}{9n} = \pi$$

QUESTION 8:

(a) (i)
$$v = 5x = 2t-6$$

 $\therefore k = t^{-}6t+C$
at $t = 0, x = 4$
 $\therefore 4 = C$
 $\therefore x = t^{-}6t+4$

in comes to rest after 3 seconds and particle is 5 m to the left of O.

(ii) at t=0
$$x=4$$
 $5=3$ $x=-5$
 $5=9+4$

(iv)
$$\int_{0}^{\infty} (2t-6) dt = [t^{2}-6t]^{\infty}$$

= (25-30) - 0

Jo (26-6) att is not the total distance travelled it is the change in displacement in the first 5 seconds. They would be the same if the particle did not stop and change directions in The first 5 seconds.

(b) (i) $\frac{dG}{dt} = -\frac{3}{1+1}$

(ii) Gas escapes => G=0

: Time is 27 seconds (correct to m

WESTION 9:

There are 2 solutions for 0 & 2 & 2.

QUESTION 10:

-: Domain is { 2: 2 5 9} Range in { 4: 4 > 0}

$$(iii) \qquad V = \pi \int_{0}^{3} x^{2} dy$$

$$V = \pi \int x^{2} dy$$

$$J = \sqrt{9-2}$$

$$X = 9-3^{2}$$

$$X = 81 - 183^{2} + 3^{4}$$

$$= \pi \int_{0}^{1} (81 - 183^{2} + 3^{4}) dy$$

$$= \pi \left[81y - 6y^{3} + \frac{3}{5} \right]_{0}^{1}$$

$$= \pi \left[243 - 162 + \frac{243}{5} - 0 \right]$$

$$= \frac{648\pi}{100}$$

.. Volume is 6487 units

19.

(b) (i)
$$A = \frac{1}{2} \cdot besse \times \underline{I} \cdot besset$$

$$= \frac{1}{2} \cdot t \cdot \sqrt{9 \cdot t^2}$$

$$= \frac{1}{2} \cdot (9 - t^2)^{\frac{1}{2}}$$
(i) $dA = (9 - t^2)^{\frac{1}{2}} \cdot t + t \cdot d \cdot (9 \cdot t^2)^{\frac{1}{2}}$

(i)
$$\frac{dA}{dt} = (9-t^2)^{\frac{1}{2}} \frac{d}{dt} + \frac{t}{2} \frac{d}{dt} (9-t^2)^{-\frac{1}{2}} (-3t)$$

$$= \frac{\sqrt{9-t^2}}{2} - \frac{t^2}{2\sqrt{9-t^2}}$$

stationary point occurs when the a

in
$$\frac{\sqrt{9-t^2}}{2}$$
 . $\frac{t}{2\sqrt{9-t^2}}$ = 0

in $\frac{\sqrt{9-t^2}}{2}$ = $\frac{t}{2\sqrt{9-t^2}}$

$$2(9-t^2) = 2t^2$$

$$18-2t^2 = 2t^2$$

$$18 = 4t^2$$

$$t^2 = \frac{16}{4}$$

$$1 = \frac{3\sqrt{2}}{2} \text{ (since } t \ge 0)$$

TEST:

dA dt	2.1	3/2 2 0	2·2 -0·3	NOTE: hust give value, for this test !!

: havinum area occurs at $t = \frac{31/2}{2}$.: Co-ordinates of P are $\left(\frac{31/2}{2}, \sqrt{9-\frac{9}{4}}\right)$ $= \left(\frac{31/2}{2}, \frac{31/2}{2}\right)$

3. 1